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Convection, Microphysics, & Aerosols =

J > Convection induced by urban environments
_______‘_________Tf',' * Y - : e transports aerosols deep into the atmosphere; even
; ' S deeper with UHIs. Warm-cloud precip forms by a
slow growth by condensation phase, followed by a

rapid growth by C&C (see fig. below)
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A= > If freezing-nuclei (aerosols) are lifted above the
freezing level, ice crystals can form and grow by
sublimation. These grow faster than surrounding

';{'@EM super cooled liq droplets, and thus fall faster to
Aerosols impact clouds and rainfall, including extreme trigger C&C (i.e., Bergeron process), which
rainfall events (Diem and Brown 2003; Molders and Olson accelerates cold-cloud precip.

2004; Rosenfeld et al. 2008; Li etal.2011),i.e.,

>

Act as CCN/GCCN, they scatter and absorb solar
radiation (a direct effect) Urban aerosols typically range in size from

Their radiative effects produce global warming/cooling 0.1 microns (CCN) to 100 microns (GCCN).
(an indirect effect)

They alter precipitation patterns and amounts, via
modification of cloud micro-physics processes (Feingold
et al. 1999)

Impacting precipitation rate with changes in con-
centration (Jiang et al. 2010)



Aerosol Concentration Effects on Precipitation

»Precipitation efficiency (PE) and cumu-
lative precipitation for a (a) convective
and (b) stratiform cloud in the Tropical
Western Pacific (Lee and Feingold 2010).

> Results show:

PE is much larger for stratiform-
cloud in lower-concentration
aerosol (i.e., control) run, while it is
only slightly larger in the Cu-cloud
run

Cumulative-precip increases with
increased concentration in the
convective cloud, and decreases
with increased concentration in the
stratiform cloud
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Frequency, % particles by count
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Model Input: Theoretical-PSD vs. Observed PSD _
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Modelers often assume a particle size distribution
(PSD), as above, but actual PSDs may be obtained via
ground obs (i.e., from the AERONET) or from

satellites
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Observed precip-totals at the AO (°), vs. RAMS modelled values
(using bimodal-PSDs) show:
» large decreases with both extra CCN and GCCN (), due to
droplet-competition
smaller decreases with only CCN ()
increases with only GCCN(m) , due the C&C efficiency of

three days show different distributions, i.e., log-linear
GCCN (C t al. 2006
decrease vs. bimodal (Comarazamy et al. 2006) (Comarazamy et a ) 4



Fundamental Research Questions _

Previous studies have shown that increased aerosol concentrations can
either increase or decrease urban precip-amounts.The present research
proposes to determine the effects of aerosol PSD variation on precip in

an urban environment.

Overall question: How do aerosols effect precipitation in urban environments?

Sub-question |: Can urban precipitation forecasts be improved with PSD

ingestion?

Sub-question 2: How does aerosol-PSD affect total precipitation?



» AERONET algorithm determines percentage of spherical particles required to give
best fit to measured spectral sky-radiance angular-distribution (Eck et al. 2012)

» PSD retrievals are QAed (version 2 and level 1.5) via Holben et al. (2006)

» Comparisons of size distributions between
in-situ and AERONET-retrievals for smoke
in South America, Southern Africa, and
North America showed volume median ”
radii r mostly within ~0.01 ym (Reid et al.
2005) .

» Of distributions (by volume) for July 2007
(on right), the 11t (blue) had the highest
volume of fine mode CCN (r <1 um) & the
18t (green) had the highest volume (V) of
coarse mode GCCN particles (r > 1 um);
these were selected for further investigation
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RAMS Meso-Met Model _

—
Regional Atm/ospheric Modeling System (RAMS) uses a two-moment scheme (Saleeby and Cotton 2004,
- 2008), which predicts hydrometeor mass mixing ratio and number concentration (see Egs.); it also allows
ingestion of bimodal PSDs (see Fig). It extends the two-moment approach to cloud-droplet distribution
via parameterization of cloud-droplet formation from activation of cloud condensation nuclei (CCN) and
giant CCN (GCCN) within lifted parcels.
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CCNY-site AERONET PSD-data ingestion

To ingest observed PSD data into RAMS,-daily V(r) distributions on selected July 2007 ggbswere converted
into daily-r=& number N-distributions (diamonds). Blue & red (diamonds)are the mode r & N-values for
~the | 1™ & 8™, respectively; green lines show the average of July 2007 data for each of the r & N. Note that

the larger GCCN r-values on the 18% does not translate into larger mode GCCN N-values; likewise for the
CCN peak on the ||t
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Case-Selection and Methodology _

NYC was-chosen because: - BN o =
~» Most densely populated US city j CeNY
(Riley 2007) _ :\ESONET

> Hot & humid summers, with

temps sometimes > 32°C
> PSD-data via AERONET

Narth Eastern United Stoles

Time-period studied:
July 2007, with five warm-season NCEP »
rainfall events, with | 1th and 18th Reanalysis -

Ly

[—> Results

selected for further investigation 25X 25 deg
because of their high rainfall
variability across region.
July 2007 Precipitation NLCD Land Data
762 i3 & 30 m Resolution
- RAMS (2008) 16,4, | km domains, At =30s
i » National Centers for Environmental Protection

n~
o
=

(NCEP) reanalysis met-data updated every 6 h,
| with a 2.5° x 2.5° resolution
o LIy _..";_- » 30 m resolution LCLU-data from

T National Land Cover Data (NLCD, 2006)
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Total Monthly Precipitation
_— (July 2007 simulations vs. NWS Obs- 2 simulations)

July F0T RMSE Cady Preciptation- (NA1) July 3007 RMSE Dadly Precipiation. (A1)
Site [ NWS- NA1l Al % % . ; 7
Obs Err | Err
NAl1l| Al
MN 147 120 32.7 | 45.1
(0 1) 125 115 13.4| 4.3
WA 115 85 37.6 | 1.7
BB 180 120 49.5( 0.3
CR 160 153 42.8 | 36.6 Y
CB 193 150 |[13.4(32.7| e e e ped v
EF 177 156 8.9 | 19.7 120 Jely 2007 RMGSE {Dally Preciphatios)
HS 155 164 | 5.1 | 0.4 o . :‘i‘?‘"i :;:-:s;
'‘RMSE U
NB 149 137 55| 3.0 i \RMSE Al g:::;';ﬁ‘;‘:‘m 33
NM 120 125 |34.631.8 £ EsomFae.  EF
§ &0 Harrison- HS
PF 148 150 | 6.3 | 7.8 L. i
JFK 131 134 | 2.5 | 0.3 ¢ SFKAlpon. K
0 Central Park- cP
cP 150 177 |143| 1.1 I l i ‘ i I ek £
EWR 179 171 5-0 0-3 ' MN O WWT BB CR CB EF HWS NB MM PF JFK CPEVWRLGA SEC Tacaie: o
LGA 168 180 6.7 | 0.04
SEC 98 83 |21.7] 3.1 A month-long simulation (updated with obs
Bottom Line: Better results with inges- daily regionally homogeneous PSDs) was com-

tion in 12 of 16 cases (also see bar graph) pared to one without updates. Red values show
better results. 10



11 July Surface-Pressure Skew-T Sounding (“Localized” case)
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This event is considered “localized,” because
its rain was not due to a synoptic front. High
pressure SE of NYC (not shown) and a N-S
low-p trough through the city (dashed line)
produce an observed southeasterly regional
onshore-flow (sea breeze).
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The CAPE value on at 00 UTC on 11 July (20
EDT on the 10™) was 890 J kg in
association with its relatively warm air. In the
dry-layer up to 300 hPa (above a surface
saturated layer), dew point temps are signifi-
cantly lower than temp-values. CAPE values
above 500 J kgt are associated with strong
local convective influences.
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Run 1 (uses obs fine-mode V-CCN"max) 11 July 2007 (localized-case)
Precipitation Rate (mm/h)\ Accumulated Totals (mm) —

11 July 2007 Total Accumulated Precipitation

11 July 2007 Precipiation Rate
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By 11 EDT, southerly flow turns into southeasterly sea-breeze over codstal NJ. Topo triggers
moderate precipitation in north & south NJ. Light precip forms along the sea breeze front at 11

& 12 EDT (red lines). Convergence over hills at 12 & 13 EDT fuels precipitation to peak at 14
EDT. Rates decrease by 15 EDT, increasing again after 16 EDT, in the NW & SW. Total accum 1
precip is highest in NJ (topo areas above 50 m), with less over NYC and points eastward.



11 July 2007 (Iocal‘ized) Precipitation Difference

11 July 2007 Total Accumulated Precipitation —_—
Run1 minus Run 2 Total Accumulated Precipitation Difference
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Total accumulated preC|p|tation for both 11
July 2007 Runs above (Run 1 and Run 2.
“Observed” here means that PSD for 11 July
2007 was used in the Run, “Alternate” means
that PSD for 18 July 2007 was used).
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Hourly total accumulated precipitation
difference plots for Run 1 minus Run 2 are
shown in the plot on the right.

Results how that the PSD switch enhances
accumulation over most of the region
(negative blues in Figs on right) because
GCCN plays a greater role in speeding up
precipitation than the smaller CCN. The
exceptions (positive reds) are likely due to oy e A
GCCN raining out quickly, allowing the CCN (mm)

to produce more intense precip after they

have eventually reached raindrop size. 13
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11 July 2007 NYC PSD Variation -
- Total Daily Precipitation

Run | 11 July 2007 Total Accumulated Precipitation (City) Run 2

Removal of the coarse mode leads
to suppression in the region

High precipitation with the presence
of both fine and coarse modes

Increased precipitation in North N}
with the presence of only the coarse
mode
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Conclusions —

—

PSD for July 2007 from AERONET were ingested into RAMS & was compared to a no-
ingestion case. Results were improved when observed PSD was ingested, i.e., for
12/16 sites, bias errors were reduced (from an average of 19% without PSD, to 12%
with PSD)

Reduced GCCN number-concentration can result in increased GCCN-volume when
the mode radius is large as is the case in 18 July 2007.

Increased V-GCCN (18™") enhanced precipitation at most locations over the region.
Increased V-CCN volume (11t) likewise suppressed precipitation.

These last two effects are attributed to hastened/reduced rates of autoconversion due
to the presence of larger/smaller particles, which enhances/impedes droplet
coalescence rates, in agreement with Comarazamy et al. (2006) & Rosenfeld et al.
(2008).

PSD can impact the rate of autoconversion, and slow (fine mode) or quicken (coarse
mode) the initiation of rainfall. Increasing the volume of fine-mode aerosol while
removing the coarse mode results in reduced accumulated precipitation totals for
12/16 sites.
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Things for the future...

» Ingest spatially varying PSD.
> Use LIDAR data to understand the vertical aerosol structure.

> Investigate MODIS and GOES satellites for aerosol information,
and learn how to ingest this information into RAMS.

16
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